

晶采光電科技股份有限公司 ■ AMPIRE CO., LTD.

Specifications for LCD module

Customer	
Customer part no.	
Ampire part no.	AM-19201080D1TZQW-TH0H
Approved by	
Date	

- ☐ Preliminary Specification
- ☐ Formal Specification

AMPIRE CO., LTD.

4F., No.116, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City221, Taiwan (R.O.C.)

新北市汐止區新台五路一段 116號 4樓(東方科學園區 A棟)

TEL:886-2-26967269, FAX:886-2-26967196 or 26967270

Approved by	Checked by	Organized by
Patrick	Jessica	Mantle

This Specification is subject to change without notice.

Date: 2020/04/27 AMPIRE CO., LTD. 1

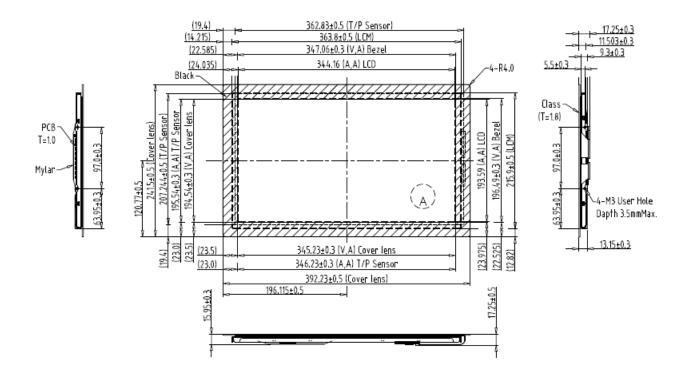
RECORD OF REVISION

Revision Date	Page	Contents	Editor
2020/04/27		New Release	Mantle

1.0 General Descriptions

1.1 Introduction

The LCM is a color active matrix TFT LCD module using amorphous silicon TFT's (Thin Film Transistors) as an active switching device. This module has a 15.6 inch diagonally measured active area with FHD resolutions (1920 horizontal by 1080 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical Stripe and this module can display 16M colors (6bit+FRC). The TFT-LCD panel used for this module is a low reflection and higher color type.


1.2 Features

- 3.3 V Logic Power
- LVDS (2ch) Interface for 1920 RGB x 1080 resolution
- 16M Colors(6bit+FRC)
- On board LED Driving circuit
- Green Product (RoHS)
- Touch panel
 - ♦ Controller: ILI2510
 - ♦ Interface: USB
- Cover glass

- ♦ Thickness: 1.8mm
- ♦ Printing: Black
- HDMI Board : connect to J3 connector.

1.3 Product Summary

Items	Specifications	Unit
Screen Diagonal	15.6	Inch
Pixel Format	1920 (H) x RGB x 1080 (V)	-
Pixel Pitch	0.17925 (H) X 0.17925 (V)	mm
Pixel Arrangement	R.G.B. Vertical Stripe	-
Display Mode	Normally Black	-
White Luminance	380 (Typ.)	cd/m2
Contrast Ratio	800 : 1 (Typ.)	-
Input Voltage	3.3	V
Support Color	16M(6bit+FRC)	-

2.0 Absolute Maximum Ratings

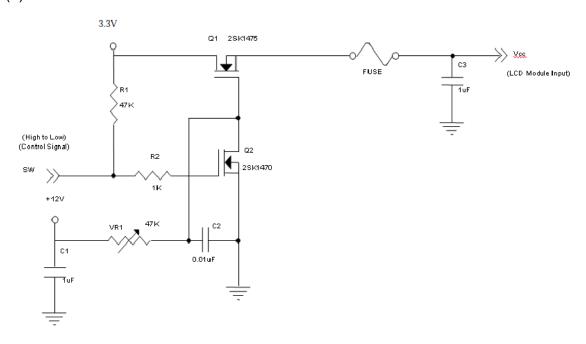
TFT LCD Module

Item	Symbol	Valu	ies	Unit	Remark
item	Symbol	Min.	Max.	Offic	Remark
Power Supply Voltage	VDD	-0.3	3.6	V	
Logic Input Voltage	VIN	-0.3	4.0	V	
Operation Temperature	TOP	-20	70	$^{\circ}\!\mathbb{C}$	
Storage Temperature	TST	-30	80	$^{\circ}\!\mathbb{C}$	

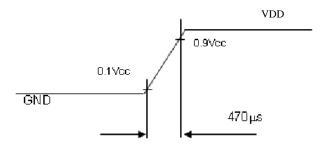
Note(1) Permanent damage may occur to the LCD module if you operate beyond this specification. Functional operation should be restricted to the conditions which described under normal operating conditions.

Note(2) Ta = $25\pm2^{\circ}$ C

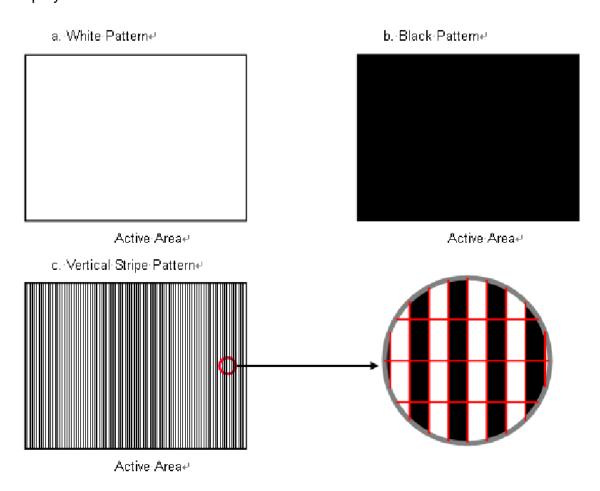
3.0 Electrical Specifications


3.1 LCD Electronics Specification

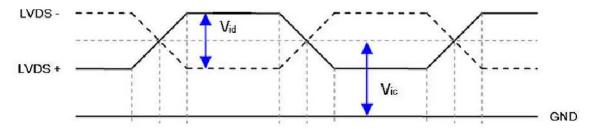
Davamat		Cymhol		Value		Unit	Note
Paramete	er	Symbol	Min	Тур.	Max.	Unit	
Power Supply	Voltage	VDD	3.15	3.3	3.6	V	ı
Ripple Volt	age	VRP	ı	ı	150	mV	1
Rush Curr	ent	IRUSH	ı	ı	3	Α	(2)
	White	_	ı	1.22	1.5	Α	(3)a
Power Supply Current	Black	-	•	0.51	0.7	Α	(3)b
	Vertical Stripe	-	-	0.82	1	Α	(3)c
Power Consu	mption	PLCD	ı	4	5	Watt	(4)
LVDS differential in	nput voltage	Vid	200		600	mV	(5)
LVDS common in	out voltage	Vic	1.0	1.2	1.4	V	(6)
LVDS terminatin	g resistor	Rt		100		ohm	


Note(1) The ambient temperature is $Ta = 25 \pm 2^{\circ}C$

Note(2) Measurement Conditions:


Date: 2020/04/27

$^{ m VDD}$ rising time is 470μs



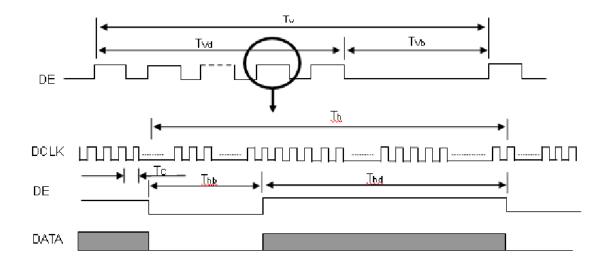
Note(3) The specified power supply current is under the conditions at VDD=3 3V, Ta=25 $\pm2^{\circ}C$, Fr=60Hz, whereas a power dissipation check pattern below is displayed.

Note(4) The power consumption is specified at the pattern with the maximum current.

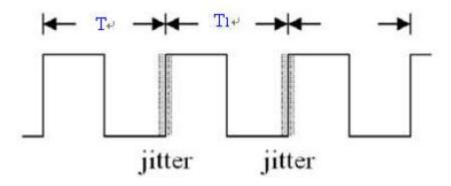
Note(5) VID waveform condition

4.0 Interface Timings

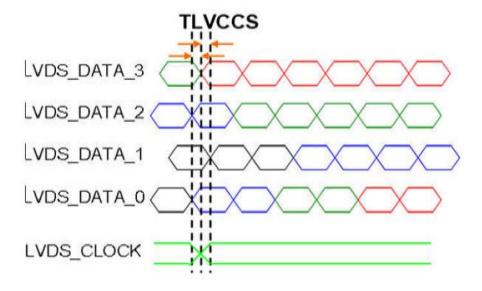
4.1 Display Timing Specifications

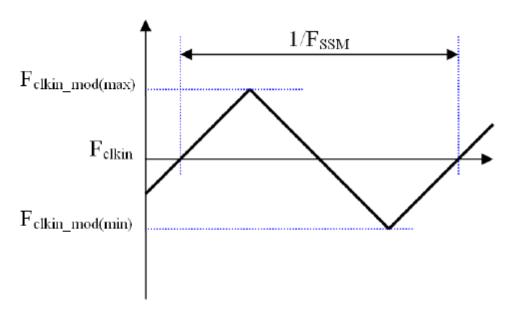

The input signal timing specifications are shown as the following table and timing diagram.

*Note: The value for LVDS each channel

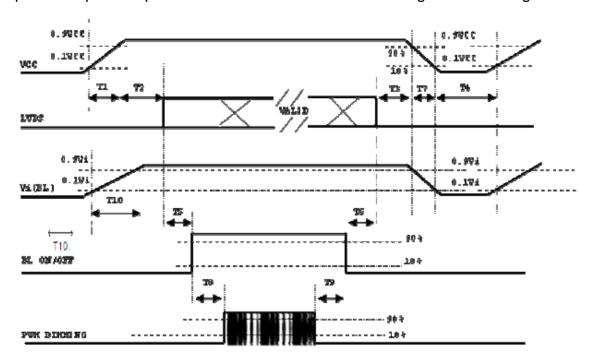

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	60	70.93	75	MHz	-
	Period	Tc		14.1		ns	
	Input cycle to cycle jitter	T _{rcl}	-0.02*Tc		0.02*Tc	ns	(3)
	Input clock to data skew	TLVCCS	-0.02*Tc		0.02*Tc	ns	(4)
LVDS Clock	Spread spectrum modulation range	Fclkin_ mod	FC*98%		FC*102%	MHz	(5)
	Spread spectrum modulation frequency	F _{SSM}			200	KHz	(5)
	Frame Rate	Fr	50	60	60	Hz	Tv=Tvd+Tvb
	Total	Tv	1090	1110	1130	Th	-
Vertical Display Term	Active Display	Tvd	1080	1080	1080	Th	-
	Blank	Tvb	Tv-Tvd	30	Tv-Tvd	Th	-
	Total	Th	1050	1065	1075	Tc	Th=Thd+Thb
Horizontal Display Term	Active Display	Thd	960	960	960	Tc	-
	Blank	Thb	Th-Thd	105	Th-Thd	Tc	-

- Note(1) Because this module is operated by DE only mode, Hsync and Vsync input signals are ignored.
- Note(2) The Tv(Tvd+Tvb) must be integer, otherwise this module would operate abnormally.


Input Signal Timing Diagram


Note(3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl= $^{|T_1-T|}$

Note(4) Input Clock to data skew is defined as below figures.



Note(5) The SSCG(Sprand spectrum clock generator) is defined as below figures.

4.2 Power ON/OFF Sequence

The power sequence specifications are shown as the following table and diagram.

Timing Specifications:

Darameter		Value									
Parameter	Min	Тур	Max	Units							
T1	0.5	-	10	ms							
T2	0	-	50	ms							
Т3	0	-	50	ms							
T4	500	-	-	ms							
T5	450	-	-	ms							
Т6	200	-	-	ms							
T7	10	-	100	ms							
Т8	10	-	-	ms							
Т9	10	-	-	ms							
T10	20	-	50	ms							

- Note(1) The supply voltage of the external system for the module input should be the same as the definiteion of VDD.
- Note(2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- Note(3) In case of VDD = off leve, please keep the level of input signals on the low or keep a high impedance.
- Note(4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note(5) Interface signal shall not be kept at high impedance when the power is on.
- Note(6) There might be slight electronic noise when LCD is turned off(even backlight unit is also off). To avoid this symptom, we suggest "VDD falling timing" o follow"T7 spec".

4.3 LVDS Input Signal Specifications

4.3.1 LVDS Data Mapping Table

LVDS Channel O0	LVDS output	D7	D6	D4	D3	D2	D1	00
LVD3 Charmer 00	Data order	OG0	OR5	OR4	OR3	OR2	OR1	OR0
LVDS Channel O1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVDS Channel OT	Data order	OB1	OB0	OG5	OG4	OG3	OG2	OG1
LVDS Channel O2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 Channel 02	Data order	DE	NA	NA	OB5	OB4	OB3	OB2
LVDS Channel O3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVDS Channel O3	Data order	NA	OB7	OB6	OG7	OG6	OR7	OR6
LVDS Channel E0	LVDS output	D7	D6	D4	D3	D2	D1	D0
	Data order	EG0	ER5	ER4	ER3	ER2	ER1	ER0
LVDS Channel E1	LVDS output	D18	D15	D14	D13	D12	D9	D8
	Data order	EB1	EB0	EG5	EG4	EG3	EG2	EG1
LVDS Channel E2	LVDS output	D26	D25	D24	D22	D21	D20	D19
	Data order	DE	NA	NA	EB5	EB4	EB3	EB2
LVDS Channel E3	LVDS output	D23	D17	D16	D11	D10	D5	D27
	Data order	NA	EB7	EB6	EG7	EG6	ER7	ER6

4.3.2 Color Data Input Assignment

The brightness of each primary color(red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary the color. The table below provides the assignment of color versus data input.

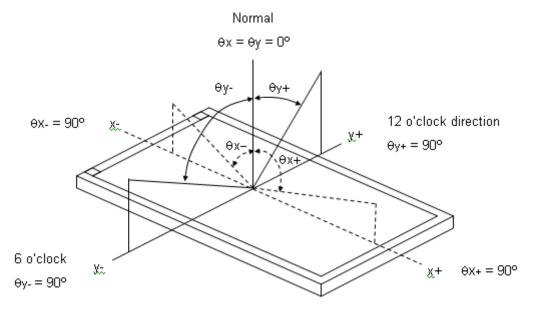
												Da	ta S	Sign	al										
	Color				Re	ed							Gr	een							Blu				
		R7	R6	R5	R4	R3	R2	R1	R0	G7	_	G5	G4		G2		G0	B7	B6	B5	B4	_	B2	B1	B0
	Black Red	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	ō	ō	0	0	0	0	ō	ō	Ó	o	0	0	o	0	0	o	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0					1							0		0								0
Scale	-	:	:	-	:	:	:	:	:	1	:	:	:	:	:	1	:	:	:	:	:	:	:	-	
Of	Red(253)	4	1	1	1	1	1	0	1	0	0	0	0	: 0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(253)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	o	0	0	0	0	o	0	0	ő
Gray		Ĭ				:	·		·	·	Ĭ	·	:	Ĭ		:	·			Ĭ	ŀ	:		-	
Scale		:	:	-	:	:	:	:		1			:	:	:		:	:			:	:	:	:	:
Of	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	Ó
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	1	1	:	:	1	:	1	:	:	:	:	:	1	:	1	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Dide	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

5.0 Optical Specifications

5.1 Test Conditions

Item	Symbol	Value	Unit					
Ambient Temperature	Та	25±2	°C					
Ambient Humidity	Ha	50±10	%RH					
Supply Voltage								
Input Signal	According to typical value in "ELECTRIC CHARACTERISTICS"							
LED Light Bar Input Current Per Input Pin		CHARACTERISTICS						


5.2 Optical Specifications

Date: 2020/04/27

The optical characteristics are measured under stable conditions as following notes. The relative measurement methods of optical characteristics are shown in 5.2 and all items are measured at the center point of screen except white variation. The following items should be measured under the test conditions described in 5.1 and stable environment shown in Note (5).

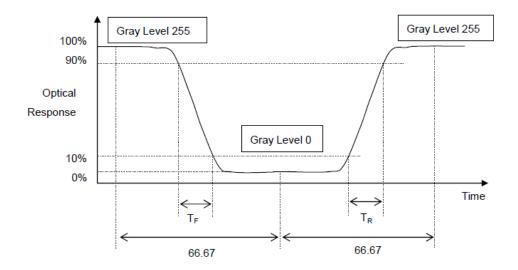
Item	Conditions		Min.	Тур.	Max.	Unit	Note	
	Horizontal	θх-	80	85	-			
Viewing Angle	Попиона	$\theta_{X}+$	80	85	-	dograo	Note	
(CR>10)	Vertical	θу-	80	85	-	degree	(1)(5)	
	vertical	θу+	80	85	-			
Contrast Ratio	Cente	r	600	800	-	-	Note (2)(5)	
Response Time	Rising + Fa	alling	-	25	35	ms	Note (3)	
	Red	Х		0.652		-		
	Red	У		0.338		-		
	Green	Х		0.333		ı		
Color Chromaticity	Green	у	Тур.	0.613	Тур.	ı	Note	
(CIE1931)	Blue	Х	-0.05	0.150	+0.05	-	(1)(5)	
	Blue	У		0.050		-		
	White	Х		0.313		-		
	White	у		0.329		-		
White Luminance	Cente	r	300	380	-	cd/m^2	Note (4)(5)	
Luminance Uniformity	9Point	s	70	-	-	%	Note (5)(6)	

Note(1) Definition of Viewing Angle (θx , θy):

Note(2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0


L255: Luminance of gray level 255

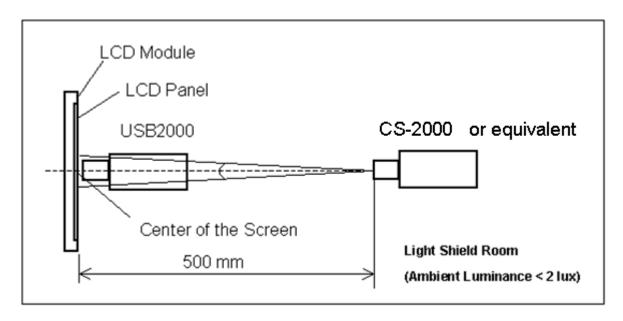
L 0: Luminance of gray level 0

CR = CR (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note(3) Definition of Response Time (TR, TF):

Note(4) Definition of Luminance of White (LC):

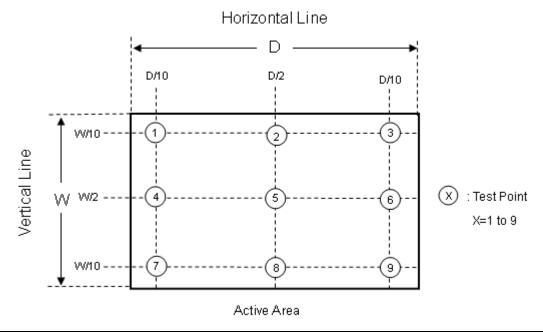

Measure the luminance of gray level 255 at center point

LC = L(5)

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

Note(5) Measurement Setup:

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a windless room.



Note(6) Definition of White Variation (Uniformity):

Date: 2020/04/27

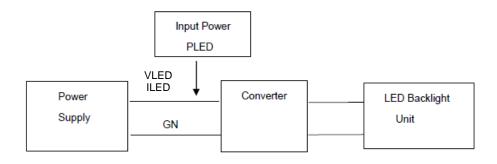
Measure the luminance of gray level 255 at 9 points

Uniformity = (Minimum [L (1) ~ L (9)] / Maximum [L (1) ~ L (9)]) *100%

AMPIRE CO., LTD.

6.0 Interface Connections

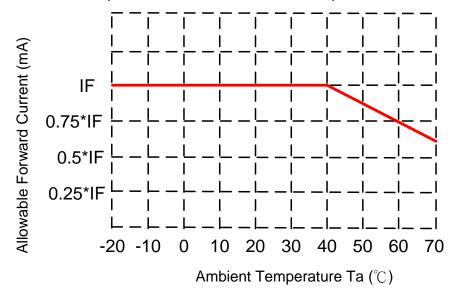
Pin#	Signal Name	Description		
1	GND	Ground		
2	NC	Not Connect		
3	VDD	Power Supply		
4	VDD	Power Supply		
5	GND	Ground		
6	GND	Ground		
7	NC	Not Connect		
8	NC	Not Connect		
9	GND	Ground		
10	INO-	-LVDS differential data input		
11	IN0+	+LVDS differential data input		
12	IN1-	-LVDS differential data input		
13	IN1+	+LVDS differential data input		
14	IN2-	-LVDS differential data input		
15	IN2+	+LVDS differential data input		
16	CLK-	-LVDS differential clock		
17	CLK+	+LVDS differential clock		
18	IN3-	-LVDS differential data input		
19	IN3+	+LVDS differential data input		
20	E_IN0-	-LVDS differential data input		
21	E_IN0+	+LVDS differential data input		
22	E_IN1-	-LVDS differential data input		
23	E_IN1+	+LVDS differential data input		
24	E_IN2-	-LVDS differential data input		
25	E_IN2+	+LVDS differential data input		
26	E_CLK-	-LVDS differential clock		
27	E_CLK+	+LVDS differential clock		
28	E_IN3-	-LVDS differential data input		
29	E_IN3+	+LVDS differential data input		
30	GND	Ground		
31	GND	Ground		
32	VLED	LED Power Supply		
33	VLED	LED Power Supply		
34	VLED	LED Power Supply		


Date: 2020/04/27 AMPIRE CO., LTD.

35	VLED	LED Power Supply		
36	LED_EN	LED Enable Pin:High→Enable		
37	LED_PWM	PWM Signal for LED Dimming Control		
38	GND	Ground		
39	GND	Ground		
40	GND	Ground		

7.0 LED Driving Conditions

Parameter		Symbol	Value			l lesit	Nata
		Symbol	Min.	Тур.	Max.	Unit	Note
	erter Power bly Voltage	VLED	10.8	12.0	13.2	V	
	erter Power bly Current	ILED	0.8	1.0	1.2	Α	@VLED= 12V Duty=100%
	er Input Rush Current	lirsh			3	Α	@VLED rising = 1mS
Power Consumption		PLED		12		W	@ VLED= 12V Duty=100%
EN Control	Backlight on	LED_EN	2.0	5	5.5	V	
Level	Backlight off	LLD_LN	0	0	0.15		
PWM	PWM High Level	LED_PWM	2.0	3.3	5.0	V	
Control Level	PWM Low Level		0	0	0.15	V	
PWM Control Duty Ratio			10		100	%	
PWM Control Frequency		fPWM	190	200	20k	Hz	
LED Life Time		LL	50,000			Hrs	(2)


- Note(1) LED light bar input voltage and current are measured by utilizing a true RMS multi-meter as shown below:
- Note(2) The lifetime of LED is estimated data and defined as the time when it continues to operate under the conditions at $Ta = 25\pm2^{\circ}C$ and Duty 100% until the brightness becomes $\leq 50\%$ of its original value. Operating LED under high temperature environment will reduce life time and lead to color shift.

Note(3) Condition: Ta=25°C, continuous lighting. Life time is estimated data. Definitions of failure:

- 1. LCM brightness becomes half of the minimum value.
- 2. LED doesn't light normally.

When LCM is operated over 40° C ambient temperature, the IF should follow :

8.0 Touch Panel Electrical Specification

8.1 Electrical Characteristics

Item	Specification		
Туре	Projective Capacitive Touch Panel		
Activation	Multi-fingers or Single-finger		
X/Y Position Reporting	Absolute Position		
Touch Force	No contact pressure required		
Calibration	No need for calibration		
Report Rate	Approx. 200 points/sec		
Control IC	ILI2510		

Item	Symbol	Min.	Тур.	Max.	Unit
Touch panel power supply	VIN	4.75	5	5.25	V
Touch panel power supply current at Normal operation mode	IVIN		45(Reference)		mA
Touch panel power supply current at USB suspend mode	IVIN		TBD		uA

8.2 Interface

Pin No.	Symbol	Function
1	GND	GND
2	DA-	USB Data-
3	DA+	USB Data+
4	VIN	USB POWER 5V
5	NA	No connection
6	NA	No connection

9.0 Reliability Test

The reliability test items and its conditions are shown below.

Test Item	Test Conditions	Note	
High Temperature Operation	70°C , t=240 hrs		
Low Temperature Operation	-20°C , t=240 hrs	(1)(2)	
High Temperature Storage	80°C , t=240 hrs		
Low Temperature Storage	-30°C , t=240 hrs		
Storage at High Temperature and Humidity	60°C, 90% RH , 240 hrs	(1)(2)	
Thermal Shock Storage Test	-20°C (30min) ~ 60°C (30min) , 100 cycles	(1)(2)	
Vibration Test (Packing)	Sweep frequency : 10~55~10 Hz/1min Amplitude : 0.75mm Test direction : X.Y.Z/3 axes Duration : 30 min/each axis	(2)	

- Note(1) Condensation of water is not permitted on the module.
- Note(2) The module should be inspected after 1 hour storage in normal conditions (15-35°C, 45-65%RH).
- Note(3) The module shouldn't be tested more than one condition, and all the test conditions are independent.
- Note(4) All the reliability tests should be done without protective film on the module.

Definitions of life end point:

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

10.0 General Precaution

10.1 Use Restriction

(1) This product is not authorized for use in life supporting systems, aircraft navigation control systems, military systems and any other application where performance failure could be life-threatening or otherwise catastrophic.

10.2 Disassembling or Modification

(1) Do not disassemble or modify the module. It may damage sensitive parts inside LCD module, and may cause scratches or dust on the display. AMPIRE does not warrant the module, if customers disassemble or modify the module.

10.3 Breakage of LCD Panel

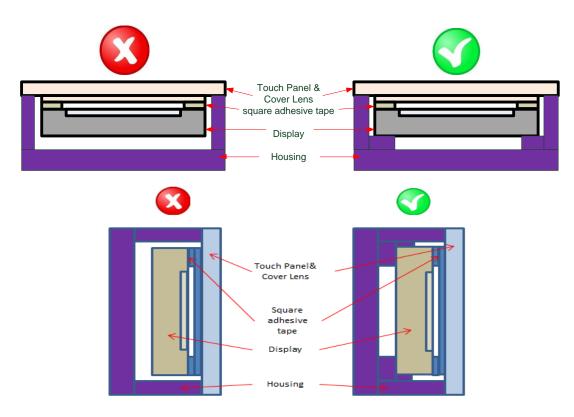
- (1) If LCD panel is broken and liquid crystal spills out, do not ingest or inhale liquid crystal, and do not contact liquid crystal with skin.
- (2) If liquid crystal contacts mouth or eyes, rinse out with water immediately.
- (3) If liquid crystal contacts skin or cloths, wash it off immediately with alcohol and rinse thoroughly with water.
- (4) Handle carefully with chips of glass that may cause injury, when the glass is broken.

10.4 Electric Shock

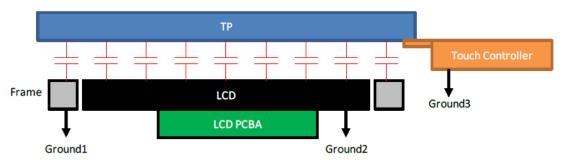
Date: 2020/04/27

- (1) Disconnect power supply before handling LCD module.
- (2) Do not pull or fold the LED cable.
- (3) Do not touch the parts inside LCD modules and the fluorescent LED's connector or cables in order to prevent electric shock.

10.5 Absolute Maximum Ratings and Power Protection Circuit


- (1) Do not exceed the absolute maximum rating values, such as the supply voltage variation, input voltage variation, variation in parts' parameters, environmental temperature, etc., otherwise LCD module may be damaged.
- (2) Please do not leave LCD module in the environment of high humidity and high temperature for a long time.
- (3) It's recommended to employ protection circuit for power supply.

10.6 Operation


- (1) Do not touch, push or rub the polarizer with anything harder than HB pencil lead.
- (2) Use fingerstalls of soft gloves in order to keep clean display quality, when persons handle the LCD module for incoming inspection or assembly.
- (3) When the surface is dusty, please wipe gently with absorbent cotton or other soft material.
- (4) Wipe off saliva or water drops as soon as possible. If saliva or water drops contact with polarizer for a long time, they may cause deformation or color fading.
- (5) When cleaning the adhesives, please use absorbent cotton wetted with a little petroleum benzene or other adequate solvent.

10.7 Mechanism

- Please mount LCD module by using mounting holes arranged in four corners tightly.
- (2) The square adhesive tape which is between the touch panel and display can't provide well supporting in the long term and high ambient temperature condition. Whether upright or horizontal position the support holder which is in the back side of the display is needed. Do not let the display floating.

(3) TP needs to work in environment with stable stray capacitance. In order to minimize the variation in stray capacitance, all conductive mechanical parts must not be floating. Intermittent floating any conductive part around the touch sensor may cause significant stray capacitance change and abnormal touch function. It is recommended to keep all conductive parts having same electrical potential as the GND of the touch controller module.

GND1, GND2 and GND3 should be connected together to have the same ground

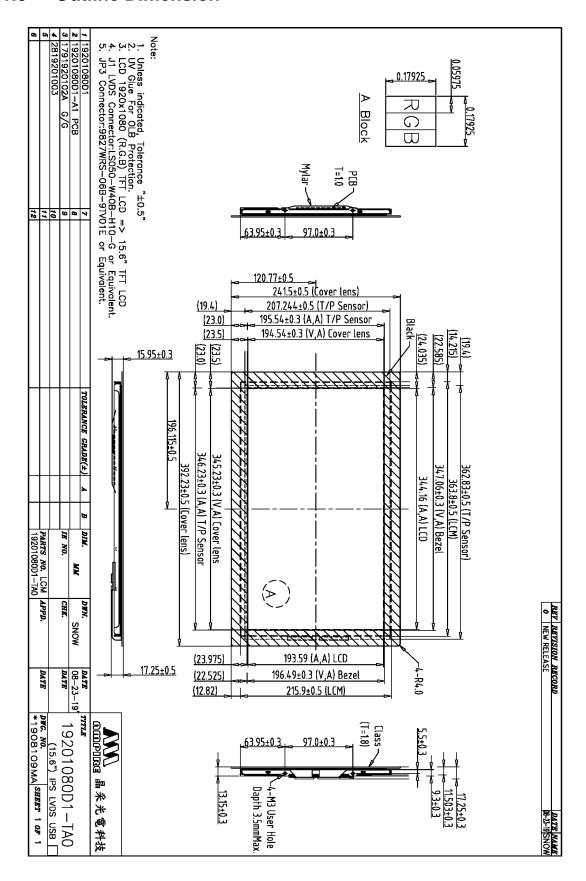
10.8 Static Electricity

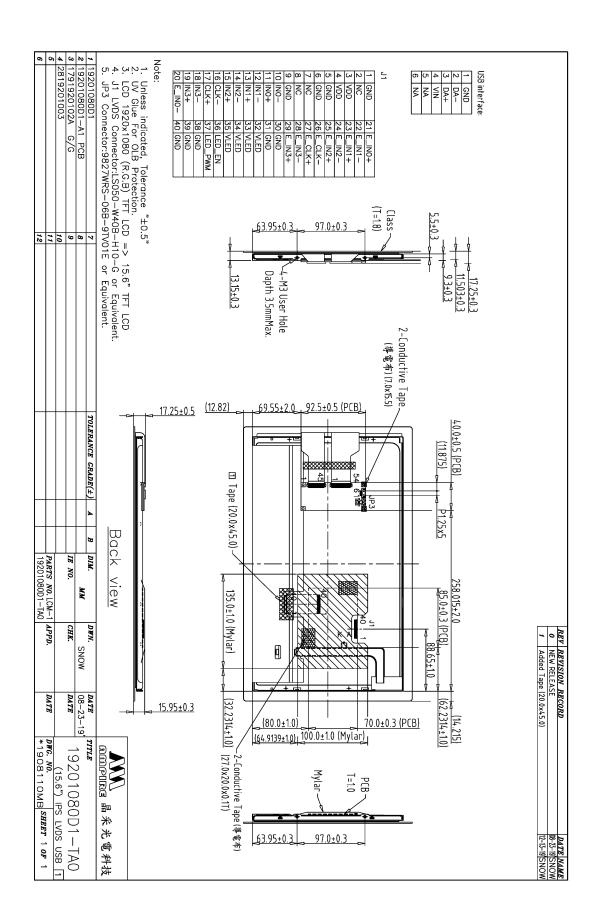
- (1) Protection film must remove very slowly from the surface of LCD module to prevent from electrostatic occurrence.
- (2) Because LCD modules use CMOS-IC on circuit board and TFT-LCD panel, it is very weak to electrostatic discharge. Please be careful with electrostatic discharge. Persons who handle the module should be grounded through adequate methods.

10.9 Strong Light Exposure

(1) The module shall not be exposed under strong light such as direct sunlight. Otherwise, display characteristics may be changed.

10.10 Disposal

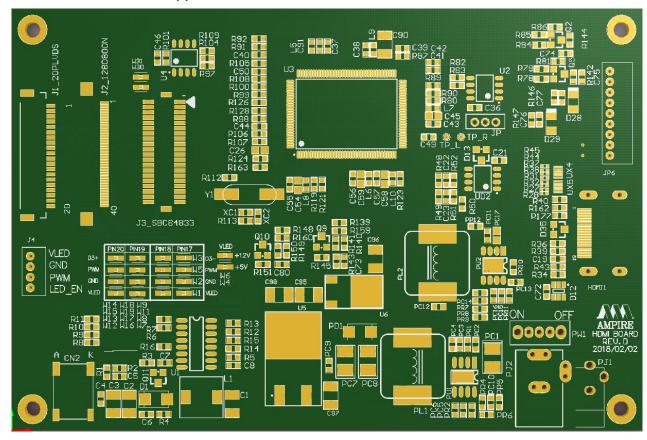

(1) When disposing LCD module, obey the local environmental regulations.


10.11 Others

Date: 2020/04/27

(1) Do not keep the LCD at the same display pattern continually. The residual image will happen and it will damage the LCD. Please use screen saver.

11.0 Outline Dimension

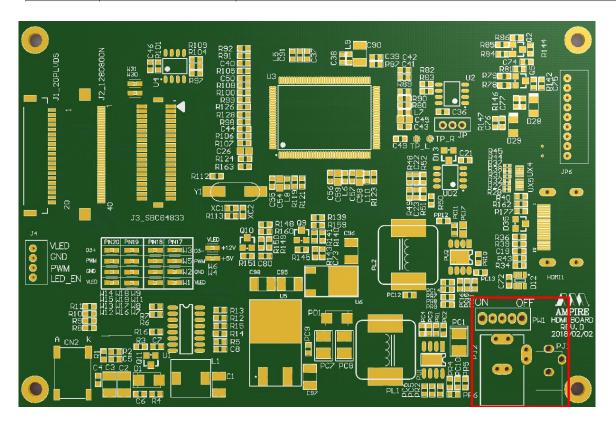

12.0 HDMI Board

Date: 2020/04/27

12.1 Feature

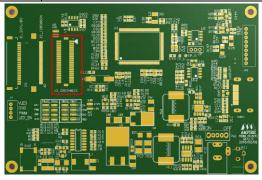
HDMI to LCD interface board

- Single Power input: 12V / 2A power input. (Connector: PJ1 or PJ2).
- LCD LVDS output: 24 BIT Single LVDS
- HDMI Digital input : (Connector: HDMI1)
 - ♦ HDMI 1.4a Compliant
 - Single-link (Type A HDMI) on-chip TMDS receiver up to 225MHz.
 Support long cable.
 - ◆ Do not support HDCP.



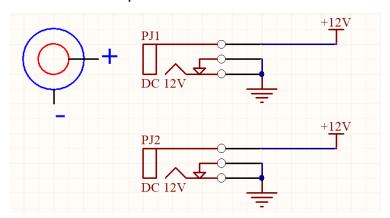
12.2 Connector

Date: 2020/04/27


12.2.1 Power connector(PJ1,PJ2)

PIN	Symbol	Description	
1	+12V	POWER SUPPLY +12V	
3	GND	POWER SUPPLY GROUND	

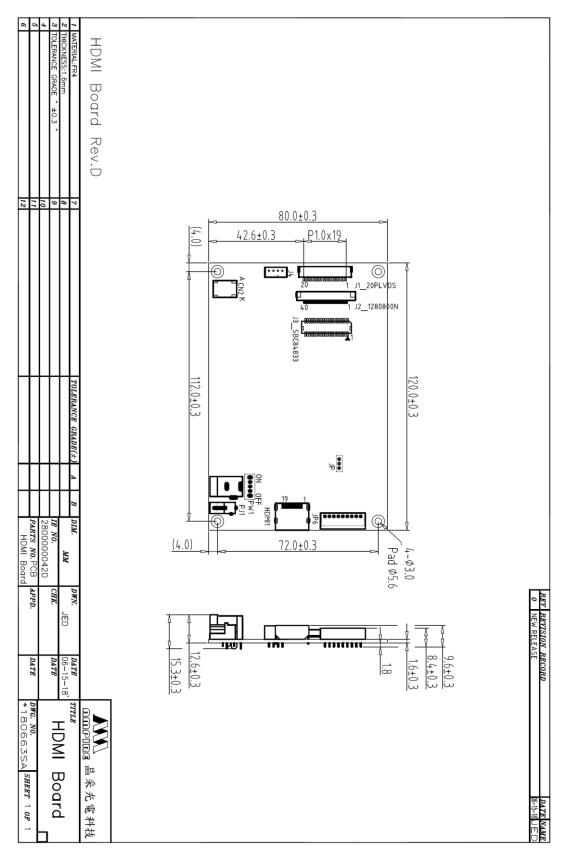
12.2.2 J3 40PIN LVDS


Pin#	Singnal Name	Description	Remarks	
1	VDD	Power Supply, 3.3V (typical)	-	
2	VDD	Power Supply, 3.3V (typical)	-	
3	VDD	Power Supply, 3.3V (typical)		
4	VDD	Power Supply, 3.3V (typical)		
5	VDD	Power Supply, 3.3V (typical)		
6	VDD	Power Supply, 3.3V (typical)		
7	NC	Not Connect		
8	NC	Not Connect		
9	GND	Ground		
10	GND	Ground		
11	LV8N	-LVDS differential data input		
12	LV5N	-LVDS differential data input		
13	LV8P	+LVDS differential data input		
14	LV5P	+LVDS differential data input		
15	GND	Ground		
16	GND	Ground		
17	LVCLK1N	-LVDS differential data input		
18	LV6N	-LVDS differential data input		
19	LVCLK1P	+LVDS differential data input		
20	LV6P	+LVDS differential data input		
21	GND	Ground		
22	GND	Ground		
23	LV0N	-LVDS differential data input		
24	LV7N	-LVDS differential data input		
25	LV0P	+LVDS differential data input		
26	LV7P	+LVDS differential data input		
27	GND	Ground		
28	GND	Ground		
29	LV1N	-LVDS differential data input		
30	LV3N	-LVDS differential data input		
31	LV3P	+LVDS differential data input		
32	LV7P	+LVDS differential data input		
33	GND	Ground		
34	GND	Ground		
35	LV2N	-LVDS differential data input		
36	LVCLK0N	-LVDS differential data input		
37	LV2P	+LVDS differential data input		
38	LVCLK0P	+LVDS differential data input		
39	GND	Ground		
40	GND	Ground		

12.3 Interface Pin Connector

PJ1 & PJ2 Power Supply Power Jack:

Inner terminal is positive. Outer terminal is GND



HDMI1: HDMI Type A Connector

PIN	SIGNAL	PIN	SIGNAL
1	TMDS Data2+	11	TMDS Clock Shield (Ground)
2	TMDS Data2 Shield (Ground)	12	TMDS Clock-
3	TMDS Data2-	13	CEC (not used)
4	TMDS Data1+	14	Reserved (No Connection)
5	TMDS Data1 Shield (Ground)	15	SCL
6	TMDS Data1-	16	SDA
7	TMDS Data0+	17	DDC/CED (Ground)
8	TMDS Data0 Shield (Ground)	18	+5V input
9	TMDS Data0-	19	Hot Plug Detect
10	TMDS Clock+		

12.4 Outline Dimension

12.5 Photo

